

Advances in Use of PGRS in Date Palm

Bhakti B. Panchal

Scientist-Horticulture, KVK, NAU, Surat

ARTICLE ID: 05

Plant growth regulators

Introduction:

What is Plant Growth Regulators?

A growth regulator is an organic compound, can be natural or synthetic, it modifies or controls one or more specific physiological processes within a plant but the site of action and production are different.

What is Plant Growth Retardants?

These are synthetic compounds which reduce the growth of the plants. AMO-1618, Phosphon –D, CCC (Cycocel)-2 Chloro ethyl trimethyl ammonium Cloride, MH and B-995 are jasmonic acid, paclobutrazol important growth retardants.

Auxins:

- **In Vivo:** Influence cell growth, stimulate root formation, induce vascular differentiation, promote tropic responses, maintain the apical dominance, induce the auxiliary buds, flowers, fruits.
- In Vitro: Induce callus, favors root and shoot morphogenesis, effective combined with cytokinins.

Gibberellins:

- In Vivo: Promote stem elongation, induce flowering, Cone initiation, Promote seed germination.
- **In Vitro:** Induce adventitious roots, can inhibit shoot formation, can inhibit root formation and can inhibit embryo formation.

Cytokinins

- **In Vivo:** Affect mitosis, promote lateral bud growth, Delay leaf senescence, promote chlorophyll synthesis, enhance chloroplast development, Promote leaf expansion.
- **In Vitro:** Stimulate cell division, release lateral bus dormancy, induce adventitious bud formation, can inhibit embryogenesis, can inhibit root formation.

Abscisic Acid:

- In Vivo: Regulates seed germination, induce storage protein synthesis, modulates water stress, maintains bud and seed dormancy, slows cell elongation, Modulates leaf abscission and senescence.
- **In Vitro:** Favors maturation of somatic embryos, Favors germination of somatic embryos, Increase freezing tolerance.

Ethylene:

- **In Vivo:** Promotes the development of root and shoots, promotes fruits ripening, promotes fruit senescence, Promote leaf abscission.
- **In vitro:** It's less frequently used, Promotes the maturation of tissues, affects stem elongation, affects root elongation, Affects bud formation.

PGRs and its examples

Growth Regulators	Its examples
Auxins	IAA, IBA, NAA, 2,4-D
Gibberellins	Gibberellic acid
Cytokinnins	Kinetine, Ziatene

Ethylene	Ethylene
Dormins	Abscisic acid
Flowering Hormones	Florigen, Anthesine, Vernaline
Misllanious natural substances	Cyclitoles, Vitamines, Phytochromes, etc
Phinolic substances	Coumarine
Synthetic growth retardants	CCC, Phosphon D, Morphactines, Maeic Hydrazide,
	etc.
Misllanious synthetic substances	Synthetic Auxin, Synthetic Cytokinin

Important plant growth regulators with their trade names

Chemical Name	Trade name
Chloromequat chloride	Cycocel, CCC
2-chloroethyl phosphonic acid	Ethephon, Proxy, Ethrel, Prep, Mature
Gibberellic acid	GA ₃ , GA ₇ , Gib, Gro
Maleic hydrazide	Sucker stuff, Royal, Fair
Naphthalene acetic acid	Dipn, Grow. Hiyield
Paclobutrazole	PP _{333,} bonze, profile

Use of PGRs in fruit crops:

- Less number of flowers
- ➢ Flower drop
- ➢ Fruit drop
- Less number of seeds
- Hard seed coat
- Less plant growth rate
- ➢ Late maturity
- ➢ Less germination

PGRs used for fruit drop:

		1		
S.N.	Fruits	Regulators	Effects	Features
1	Mango	2,4-D 40 ppm	Reduction of fruit	6 weeks after fruit
			drop	set
2	Citrus	2,4-D @ 20 ppm	To control pre-	Kinnow
			harvest flower drop	mandarine

3	Date palm	GA ₃ and BA@ 100-150	Reduction of pre-	40-70 days after
		ppm	harvest fruit drop	pollination
4	Litchi	Pre harvest drop	Pre harvest drop	After fruit set
5	Apple	Pre harvest drop	Pre harvest drop	7 days ahead of
				anticipated
				harvest
6	Litchi	GA ₃ 25 ppm and NAA 25	Fruit set	Full bloom stage
		ppm		
7	Apple	500 ppm GA ₃	To increase the fruit	
			set	
8	Mango	GA ₃ 25 ppm and NAA	Fruit set	Full bloom stage
		25 ppm		
9	Sapota	25-100 ppm NAA	For fruit set	At flowering
10	Citrus	NAA@100-500 ppm	Fruit thinning	Stage 1 fruit
				growth
11	Apple	Ethephone @ 100-300	Flower or fruit	7–10-day petal
		ppm	thinning	falls
12	Peach	2. <mark>5 % thiou</mark> rea, 5 % GA ₃ ,	Fruit thinning	After fruit set
		Urea 4-6 %, Ethrel at		
		100- <mark>15</mark> 0 ppm		
13	Mango	Ethrel	500 ppm in hot	For fruit ripening
	(Malika cv)		water $(54 \ ^{0}c + 1^{0}c)$	and improve fruit
			for 5 minutes	quality
14	Banana	TBZ	200 ppm	For fruit ripening
15	Pineapple	Ethrel	2-4 kg/ha 3 weeks	For fruit ripening
			before harvest date	at 10-15 days after
				application
16	Banana	Trifoliate	2500 ppm for 5	Enhanced storage
			minutes	life
17	Mandarin	Ethrel	1000 ppm At 24-	Enhanced storage
			28 ⁰ C	life
18	Mango	Benomyl	300 ppm for 10	Enhanced storage
			minutes	life

Vol. 4 Issue- 5, January 2024

(e-ISSN: 2582-8223)

19	Pineapple	Ethephone combination	Uniform flowering	March-May
		with (urea 2 %+ CaNa		season
		carbonate 0.04%)		
		NAA @10-20 ppm	Flower induction	Less effective
20	Mango	KNO ₃ 2 %	Flower	
			manipulation	
21	Jackfruit	NAA @25 ppm	Improve	Seed soaking
			germination	
22	Aonla	GA ₃ @500 ppm for 24	Enhanced seed	
		hrs	germination	
23	Papaya	GA ₃ @200 ppm	Improve	Seed soaking
			germination	
24	Pineapple	MS medium-	Slips apical section	Shooting
	(Kew)	1.5 ppm BAP+0.5 ppm		
		NAA and 2.0 ppm		
		BAP+0.2 <mark>5 ppm</mark> NAA		
		2 ppm IBA and 1.5 ppm		Rooting
		IB <mark>A + 0.5</mark> ppm NAA		
25	Banana (Musa	BAP and IAA $(5.0 + 1.0)$	MS medium	Shooting
	sapientum L.)	mg/l, respectively)		
		IAA (2 mg/l)		Rooting
26	Allahabad	BAP 3.0 mg/l, IBA 10	MS medium	3 cm long nodal
	Safeda	mg/l		segments
27	Ganesh	1.0 mg/1 BA + 0.5 mg/1	Axillary shoot	Shoot tip, nodal
		NAA, 0.5 mg/l IBA	proliferation	segment
			rooting	
28	Balwant	4.44 mg/l BAP+2.46	Shoot proliferstion	Nodal segments
		mg/l IBA		
29	Guava	NAA @200 ppm	Softwood cutting	With 2 nodes and
				4 leaves
		3000 ppm IBA by	Air layering	
		pasting lanolin paste		

Page 3

30	Pomegranate	IAA at 200 ppm	Hard wood cutting	Fully mature
				wood and 1 year
				old
		10000ppm IBA lanolin	Air layering	Fully mature
		paste		wood and 1 year
				old
31	Litchi	10000ppm IBA+ ferulic	Semi+hard wood	CV. Bombai
		acid	cutting	
32	Jamun	IBA 1 % by pasting	In air layering,	Promote root
		lanoline paste IBA 1000	In cutting	
		ppm by quick dip method		
33	Mango,	IBA+BA (500+500ppm)	By grafting	Useful in joining
	Grape, Sapota			the scion on root
				stock
34	Citrus, Ber,	IBA+BA (500:500 ppm)	Useful in bud joints	In budding
	Jamun			
35	Mango	2000 <mark>ppm</mark>	For reduction of	CV tommy atkins
			tree height	
36	Apple	NAA at 1.5% in latex	For reduction	
		paint	rootstock suckers	
37	Grapes	CCC 500 ppm	Reduction of shoot	
			growth	
38	Citrus	GA ₃ @25 ppm and 50	Flowering behavior	In acid line
		ppm, 2,4-D @ 20 ppm	and regulation	
39	Pomegranate	Application of GA ₃ 40	Fruit cracking	At maturity
		ppm		
40	Apple	NAA 5 mg/l	Improve fruit size	
			and colour	
41	Grape	GA ₃ @10-40 ppm	Enlargement of	
			panicle growth	
42	Papaya	GA ₃ 50 ppm	Increased	In co.1
			femaleness	
43	Mango	NAA @200 ppm	Improve	In first week of
			productivity of tree	October

			affected by	
			malformation	
44	Guava	NAD 50 mg	Increased fruit yield	By deblossoming
				the summer
				flower

Different method for the use of PGR:

- ↓ Use of hormones in powder form
- ↓ Use of hormones in liquid form
- 4 Quick dip method
- Long dip method or slow method
- ↓ Use of hormones in paste form
- Use of hormones in vapour form
- **Use of hormones in the form of Aerosol**

Do's and Don'ts in use of growth regulators

- **Growth substances should be psrayed preferably in afternoon**
- Avoid spray in windy hours
- Spray should be uniform and rationally distribute on the foliage by ensuring wetting of both the surface of leaves
- Add surfactant or adhesive matrial like Teepole, Tween-20 or Gum with growth substances at an appropriate stage of plant growth
- **4** Ensure uniform dissolving of chemical before use
- ♣ Always use fresh solution
- ↓ Always use distilled water for preparation of solution
- Fine sprays through hand atomizer can be more economical and effective
- 4 Wash thoroughly the spraying equipment before and after each spray

Date palm:

Introduction:

- **4** Botanical name: *Phoenix dactvlifera*, family: Arecaceae
- 4 Originated probably from land around Iraq
- 4 Cultivated in Egypt as early as 4000 BCE for wine
- 4 In Arabia it was cultivated in 6000 BCE ago

Evident shows that it was cultivated in Western Pakistan in 7000 BCE (Mehrgarh) Indus valley

• Sowing, planting, growth

- **4** Propagation is mostly done by suckers
- **4** Remove the earth from the base
- Separate it very carefully from trunk
- ↓ So that its root is not injured
- **4** Suitable age of suckers for transplanting: 2-3 years
- 4 Time of transplanting: Spring: Feb to Mar, Autumn: Sept/Oct
- ↓ Time to start bearing: 4-5 years
- ↓ Time to full production: 6-8 years
- Normal economic bearing life: 50 years
- Time of flowering: Feb to March
- **W** Time of harvest: Aug to Oct
- Pits size is 75x75x75 cm
- 4 It should be prepared before 1 month of planting
- Jan/Feb for spring & Aug/Sep for autumn planting
- **4** In orchards plant male tree in ratio of 1 male to 20 females for better pollination
- 4 Planting: Orchard planted on square system
- Spacing: Tree spaced as 6 x 6 m or 112 trees/acre
- **4** Intercropping:
- ↓ Date palms are tall trees they have enough inter spacing between them
- 4 It is possible to grow a mixed orchard

Example:

- ↓ Date intercropped with citrus
- ↓ Field crops such as fodder and vegetable may also be grown

Use of PGRs in date palm

In propagation:

• Seeds treated with GA₃ at 100 ppm exhibited better seedling growth with higher germination percentage, number of leaves per plant, number of roots per plant and root length.

- NAA improved rooting in ground offshoots and is also essential for good root formation in aerial offshoots.
- 2,4-dichlorophenoxyacetic acid (2,4-D) as the most efficient auxin to induce embryogenic callus at 100 mg L-1 concentration in date palm.
- An application of GA₃, the size of midrib increased along with number of vascular bundles.
- Application of NAA at high concentration along with high saline water prevented a reduction in mineral nutrients. Furthermore, it increased the concentration of Na, Cl, N, P, Ca and Mg in roots. Moreover, seedlings treated with NAA in saline affected irrigation water did not show any symptom
- Inflorescence pollinated with pollen having higher level of IAA and GA₃ in initial stage exhibited better growth and fruit size with larger fruit weight at later stages, which represents the influence of metaxenia.
- Freshly opened clusters were sprayed with Indole acetic acid (10 ppm), Gibberellic acid (10 ppm), 6-Furfurylaminopurine plus gibberellic acid (10 ppm). Results indicated that growth regulators applied significantly increased the fruit weight, fruit length and formation of seedless fruits.
- Application of NAA alone or in combination with GA₃ and ethephon reduced fruit dry matter percentage and ripening. However, it increased the fruit flesh percentage and production per bunch and per tree.
- The relative effectiveness of GA₃ (150 gm L-1), NAA (100 gm L-1), ethephon (1000 gm L-1) and a combination of these growth regulators on some fruit characteristics and fruit yield of date palm.
- Concluded that GA₃ and BA at a concentration of 150 ppm gave the highest yield with the best quality and fruit characteristics.
- BA treatments with low concentrations of auxin and GA₃ were suitable for improvement in quantity and quality traits of 'Shahani' date fruits.
- The application of 10 mg/L 6-phurphuril amino purin + GA₃ on pollinated clusters of three date cultivars ('Simbebel', 'Talis' and 'Edvi') significantly increased fruit weight and length and produced seedless fruits.
- Significantly higher bunch weight, fruit weight, flesh weight and TSS were recorded by the application of NAA at 60, 80 and 100 ppm.

- Spray of 1000 ppm ethephon at colour break stage was thus found beneficial for uniform maturity, ripening and production of better quality fruits in date palm (Meena et al., 2013).
- GA₃ spray on date palm fruits has been reported to improve fruit size and quality (Hussein et al., 1996; Moustafa and Seif, 1996; Moustafa et al., 1996);
- In the first method, 2 ml of ethrel was injected by making a small pit on the peduncle and covered by a cellotape. In the second method, 1000 ppm ethrel was sprayed on the fruit bunches. There was significant increase in fruit ripening especially by the first method.
- Combination of GA₃ (100 ppm) and NOA (100 ppm) growth regulators, when sprayed on unpollinated clusters, produced normal size seedless fruits that were late in ripening.
- Generally, treatments having BA with low concentrations of auxin and GA₃ were suitable for improvement of quantity and quality traits of 'Shahani' date fruits.
- Role of PGRs on Post Harvest Management Internationally, dates are harvested at the Khalal, Rutab and Tamar stage depending on the variety, agroclimate and market demand.
- The degree of perishability decreases from KhalalRutab-Tamar. In India, dates are harvested at the Khalal stage also known as Doka stage to avoid damage by rainfall. Keeping in mind the demand by consumers and to avoid losses caused by rainfall, researchers have attempted to hasten or delay ripening in date palm utilizing PGRs.
- Generally, treatments having BA with low concentrations of auxin and GA₃ were suitable for improvement of quantity and quality traits of 'Shahani' date fruits.
- The results indicated that, the treatment with growth regulators significantly increased the weight of the fruit, length of the fruit of the fruit and then the formation of seedless fruits.
- The number of fruitset was also increased. The varieties responded differently to each growth regulator.

References:

- Kumari, S., Bakshi, P., Sharma, A., Wali, V., Jasrotia, A. & Kour, S. (2018). Use of Plant Growth Regulators for Improving Fruit Production in Sub Tropical Crops. *International Journal of Current Microbiology and Applied Sciences*.7.659-668. 10.20546/ijcmas.2018.703.077.
- Suman, M., Sangma, P. D., Meghawal, D. R. & Sahu, O. P. (2017). Effect of plant growth regulators on fruit crop. *Journal of Pharmacognosy and Phytochemistry*.**6**(2): 331-337.

TNAU Agritech Portal, Agriculture, Plant Nutrition: Plant Gowth Regulators.

- Elmaataoui S, Mazri MA, Meziani R, Bouchiha F, Anjarne M and Alfeddy MN. (2020). Optimization of auxin-cytokinin combination for rapid proliferation of adventitious buds of date palm cv. Aziza Bouzid. GSC Biological and Pharmaceutical Sciences, 11(1), 01-08.
- Shama, K.M., Ahlawat, T.R., Murlidharan, C. M., Suchismita, J and Patel, D. (2019). Plant Growth Regulators in Date Palm. PGRs in Tropical and Subtropical fruit crops. 10, 164-186.

